

IMA CASE
COMPETITION

Become a Towering Tree

Cost Reduction & Efficiency Improvement
 Long-term Development

Team: Sailing Number: HN20221886

Content

01

Overview

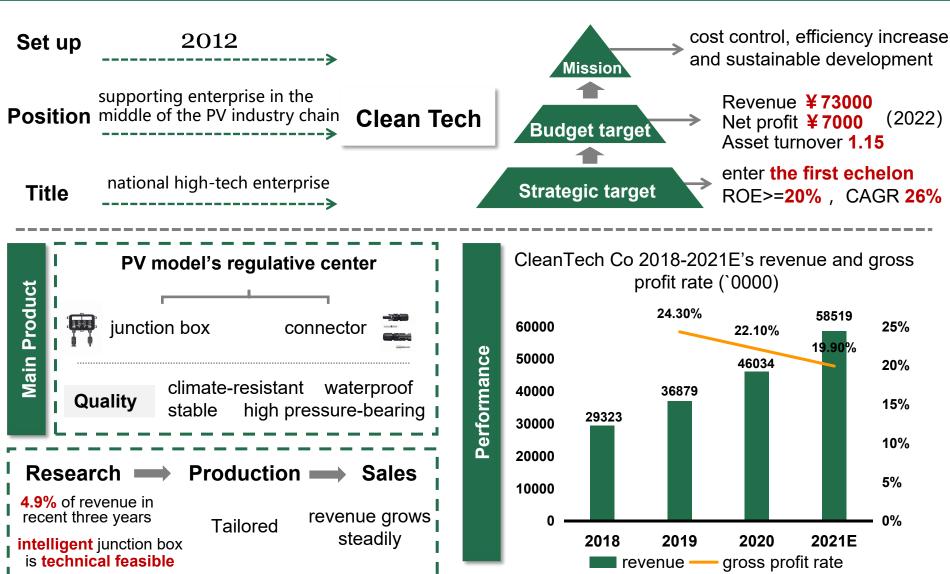
02

Center Strategies

03

Budget Management for Tech Center

- ➤ Distinguish R&D's two stages
- > Analysis of ¥5m
- > Suggestions for budgets



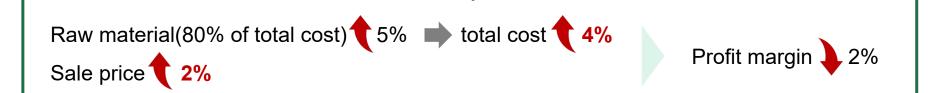
CleanTech Co: A Supporting Enterprise in the Middle of PV Industry

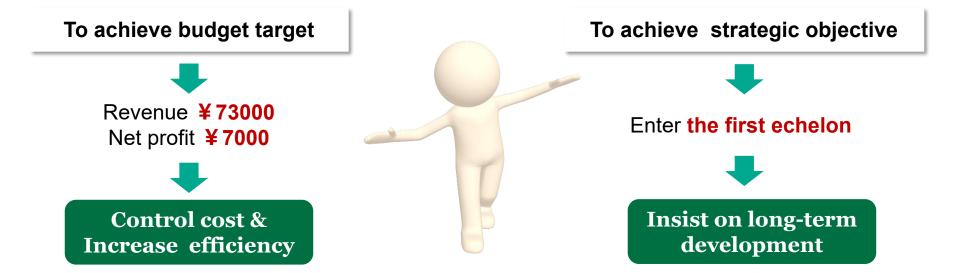
Chain, Striving to Enter the First Echelon

Major Business Activities

3 year's CAGR **25.9%**

Average GPR **21.**77%


Introduction



- > Sea freight increase
- > Time of sea shipping extend
- > Cost of **temporary employment** increase
- > Subsidies in the photovoltaic industry decline

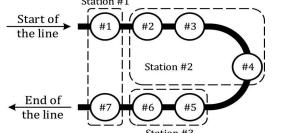
Production Center: Measures Taken to Reduce Costs and Improve Efficiency that Can Work in a Relative Shorter Time

Strength the Maintainance of Equipment

- Try best to achieve zero failure
 - ✓ Form the appropriate notion —
 zero failure can be achieved
 - ✓ Production personnel cooperate with maintanance personnel
- Reduce the downtime
 - ✓ Arrange the maintainance time in nonproduction time

The equipment never has problems

In the process of management of equipment, you can decide when to overhaul to ensure that the equipment maintanance will not interrupt the production process


- Implement total production maintanance(**TPM**)
- ✓ Let production personnel participate in the maintainance work

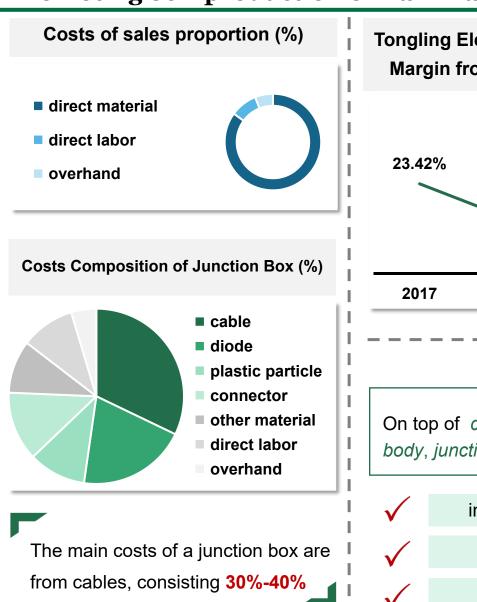
Improve the space utilization rate of factory

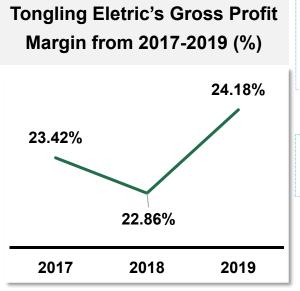
Place equipment compactly

- ✓ eliminate conveyor belt production line
- ✓ integrate the separated workstations into the mian production production line
- ✓ reduce handling distance

Build a **U-shaped** production line

save **half** of space needed




Production Center (Continue efforts in future): Upward Integration,

CleanTech Co.

Tongling Ltd actively expanded upstream from 2017, purchasing raw materials like tinned skeins to produce cables, important part of junction boxs

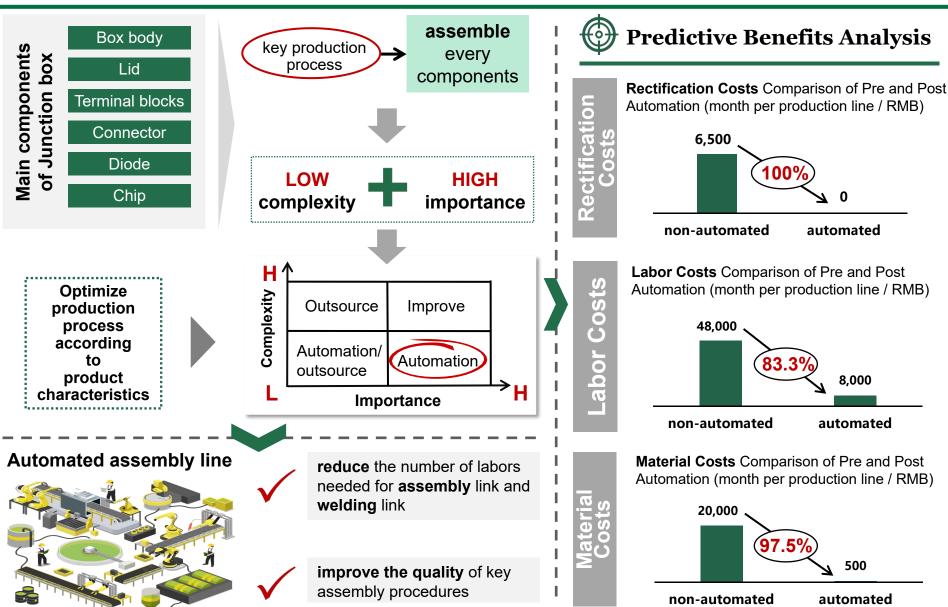
Tongling Ltd achieved more than 70% cables produced by self-owned production line until June 2021

home-made outsourced

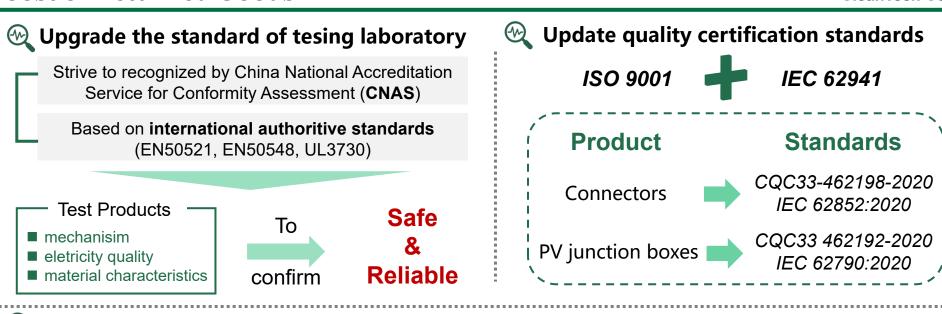
Upward Integration Produce Raw Material by CleanTech Co

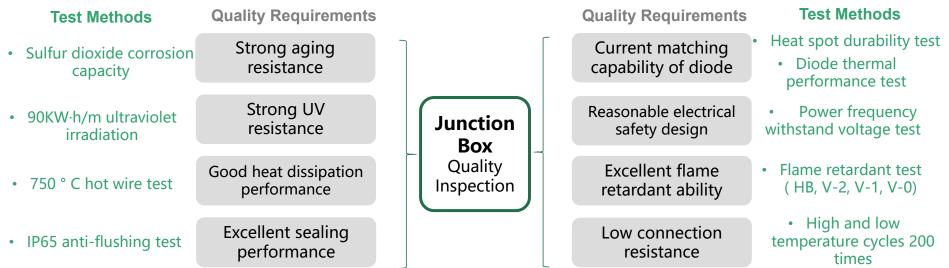
On top of *cables*, CleanTech Co can purse to produce *junction box* body, junction box cover, conductive metal items and so on by itself

improve **vertical integration** of product production


strengthen the control of costs

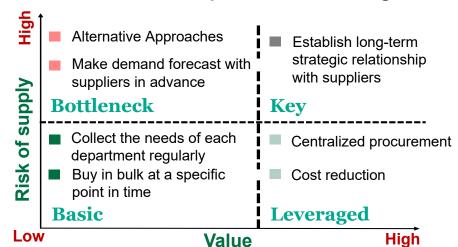
increase the **GPM** of products


Production Center (Continue efforts in future): Promote the Automatic Transfermation of Production Line



Quality Center: Strengthen and Improve Quality Detection, Reducing Cost of Returned Goods

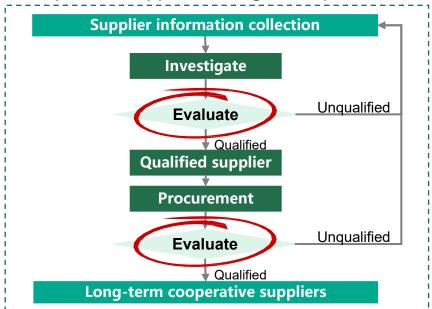
Strengthen the strength of quality inspection



Supply Chain Center: Procurement Process Control + Suppliers management (Be Effective in a Relative Shorter Time)

Procurement Control

Customize different procurement strategies



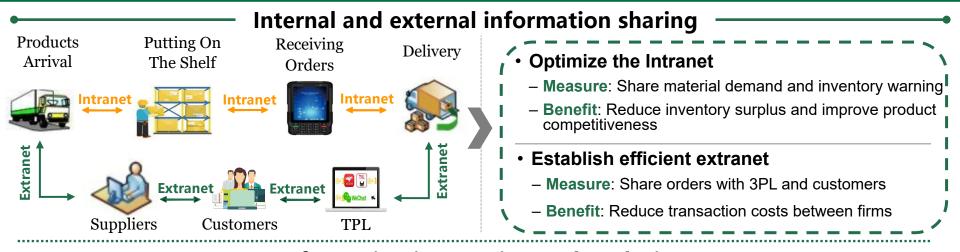
- Strengthen cost control and supply continuity
 - Purchasing volumes:
 - Producing according to sales
 - Purchasing Unit Price:
 - Lock cost by confirming with suppliers in advance
 Reduce fluctuation by using derivatives, like future
 - Supply continuity 3 Strengthen purchasing plan and stocking strategy
- **Performance Management**

ltem	Sub-item	Weight	Score	
	Punctuality	0.4	25	
Staff	Accuracy	0.4	25	
Stair	Cost	0.1	25	
	Professionalism	0.1	25	

Suppliers management

Optimize supplier management process

Expand the range of supplier choices



Performance Management

ltem	Sub-item	Weight	Score
	Punctuality	0.4	25
Supplier	Quality	0.4	25
	Technology	0.1	25
	Service	0.1	25

Supply Chain Center(Continue efforts in future):Internal and external information sharing + Information integration and analysis

CleanTech Co.

Information integration and analysis

≻Visualization of storage

- > Build an Automated Warehouse
 - ✓ Number of workers

79%

✓ Land area

Optimal transportation mode Transport-Transit **Transport Transport** time ation cost service capacity Mean Rate of Accessi Security transit change -bility Hierarchical analysis Rail-way Waterway **High-way Aviation**

> Choose a reasonable mode of transportation

Market Center: Optimize Management of Domestic Market + Strengthen Management of Current Customers

Optimize mgt of domestic market

- Divide domestic market into six parts
- Learn local specified weather conditions
- Adjust junction box to make it more suitable for every region

(E.g. strengthen climate-resistance, sun-proof, water-proof)

Improve degree of satisfaction

Strengthen mgt of current customers

Satisfy differentiated demand

- Communicate with main customers regularly
- Satisfy the PV module manufacturers' differentiated demand resulted from the fierce competition
- Increase customers' loyalty
- Strengthen mgt of trade receivables

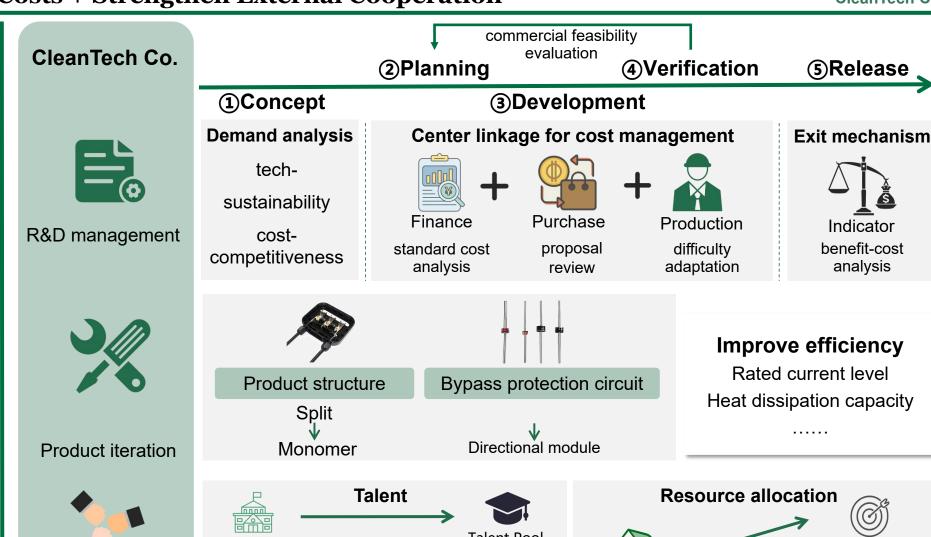
Considerations of customers' credit rating

financial conditions

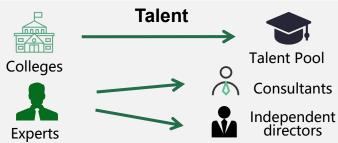
% of sales revenue

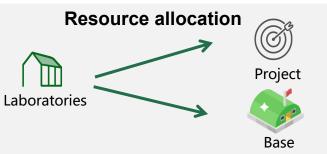
Customers

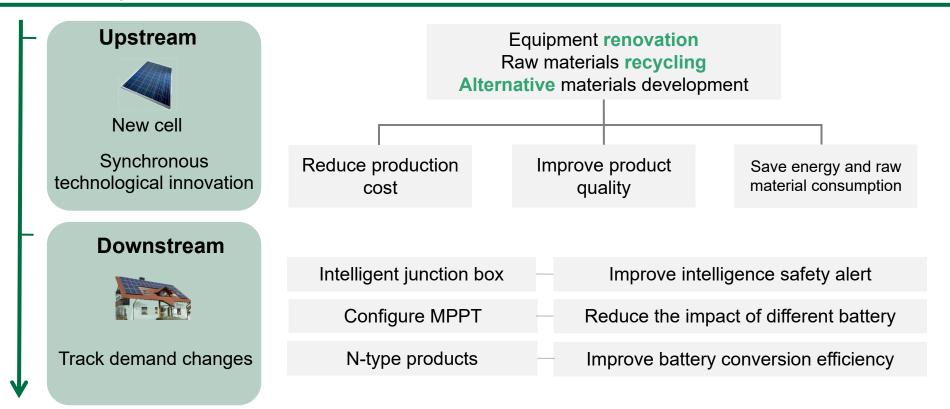
historical trading duration


payment habits

Arrange sepecified person to **collect TR**


- ✓ classify customers according to credit rating
- ✓ require payment to be made within 1-4 months (PV industry's convention)
- √ chase overdue receivables timely
- update credit rating regularly

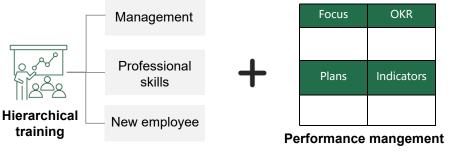




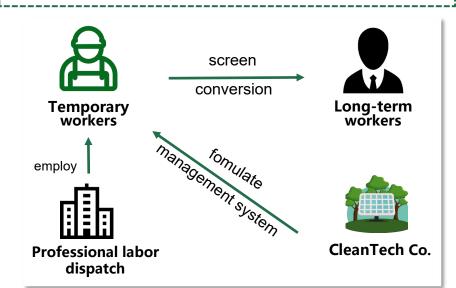
Technique Center: Industry Convergence to Improve the Efficiency of PV Conversion


Measures	Aging of effect	Effect
R&D management	Short-term	Avoid high cost loss; Shorten development cycle Reduce product changes after production
Strengthen cooperation	Long-term	Form complementary advantages on talents and equipment
Industry Convergence	Long-term	Improve product performance Improve customer loyalty

Personnel Administration Center: Improve the Personnel Management System



Recruit outstanding talents


Manage employers

Reduce the risk of temporary employment

Employers need to choose formal institutions, cooperative employment, signed formal contracts, to ensure the quality of work.

Retain outstanding talents

Summary—Implications

- ✓ Reduce temporary labor costs
- Reduce turnover rate
- ✓ Improve production efficiency
- ✓ Enhance sense of belonging

Financial Center: Operating, Investing and Financing Measures in Short-term

Operating Reasonable tax planning

Set-up stage

Transfer part of the business to low-tax areas

Procurement stage

- ✓ Take advantage of time difference between purchasing and receiving raw materials
- ✓ A reasonable delay in payment

Investing Investing project control

Project management

- (1) Pre-invest information collect
- <Pre-invest Background Investigate>
- (2) Project evaluation

Visualize evaluation results

(3) Project implementation

<Project Settlement Sheet>

Sales stage

- ✓ Prepaid or outsourced freight
- ✓ Split up to enjoy small-scale tax benefits
- Internal accounting stage
- Select an appropriate method of issuing inventory
- ✓ Accelerate depreciation to reduce current income

Risk control

Transfer
-Long-term loss of workplace

Impact

- Workplace
- ·Failure succession and plan
- ·Employee theft
- ·Employee violence

Medium risk

Low risk

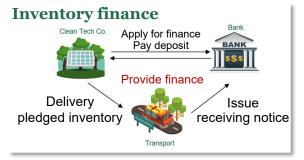
·Pollution endangering health and safety

Accept

Avoid

- ·Workplace inaccessible due to weather
- Noncompliance
- · Employee litigation
- High risk

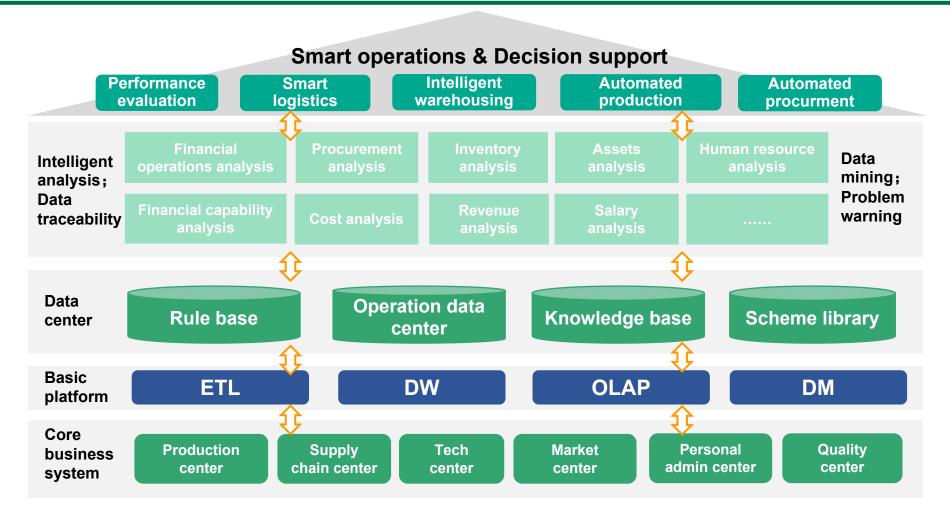
Medium risk


·Short-term loss of workplace

Reduce

Probability

Financing Supply chain finance



Financial Center: the Integration of Business and Finance

As the hub of decision-making information, the financial department links the economic decision-making of all departments

Technology Development VS Product Development

Technology Development

It refers to the **substantial improvement** for processes or systems of production or management by using knowledge gained from **research and experience** internally or **importing technology** externally.

Product Development

It refers to the process of upgrading current products or designing, conceiving and realizing new products, based on market needs, industry environment and other aspects.

Main point: The change of Perceived Value of a product or service to Customers

What is Perceived Value

The judgment of a product or service by consumers ideas of what is taken and what is given.

Usage value

Exchange value

Esteem value

Who are Customers

A customer becomes a consumer when he or she uses the goods or services

Internal customer

External customer

If **change**, then it's **product** development If **not change**, it's **technology** development

Technology Development VS Product Development

Characteristics

Target
Certainty
Objects
Risk
Team member
Project establishment criteria
Success criteria

Technology development
Money → technology
Improve production capabilities for multiple market segments
Exploratory, uncertain
Equipment, material, energy resource, production process
High technology risk
Technician
Applied in the future to form strategic leverage of differentiation advantages
Can be used for product development/production improvement

Product development
Technology → money
Achieve the financial goals ; deliver product on time ; satisfy needs of one market segment
Certain, predictable
Product
Low technology risk; high commercial risk
Cross-department team
Achieve profits or fit into strategy
Met customer requirements and achieved sales expectations

Management focus

Cost
Security
Excellence & Professionalism

Quality
Efficiency
Customer needs

Technology Development and Product Development in Intelligent Junction Box

CleanTech Co.

Functional advantages of intelligent junction box

Product types	Bypass Protection	Temperature detection	Voltage detection	Output switch	ID uniqueness	Wireless communication	Current detection	Alarm	Power tracking
Traditional	√	×	×	×	×	×	×	×	×
Normal intelligent	√	√	√	×	√	√	×	√	×
Fully-intelligent	√	√	√	√	√	√	√	√	√

Technology development in junction box

- Maximum power point tracking technology
 - Monitor and improve the power generation efficiency
- Intelligent shutdown technology
 - Automatically cut off circuit in abnormality
- **MOSFET thyristor integrated control technology**
 - Reduce heat generation to increase service life
- Scientific achievements management technology
- Phased achievement verification technology
- Technology alarm and control technology

Temperature Voltage Current detection detection detection Wireless Power uniqueness communication tracking

Overall process efficiency and management

- Alarm Output switch
- **Bypass** Protection

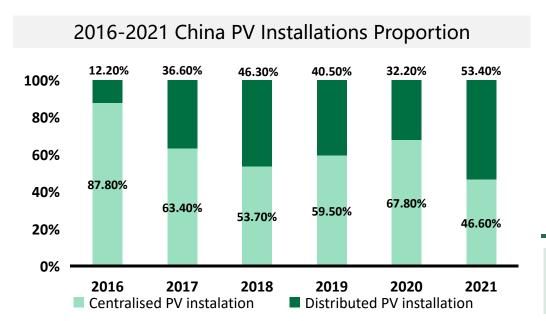
Product development in junction box

- Intelligent control chip
- -Through three main functions, improving life cycle of junction box, reducing cost of cables, wiring and other materials

Technology

Supporting **Fechnology**

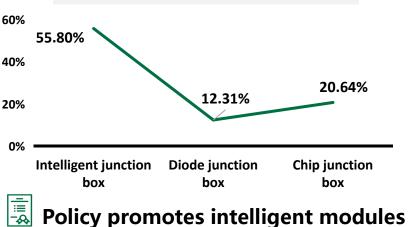
The Necessity of an Increment of ± 5 m in R&D Development: Seize market opportunity and maintain long-term competitiveness


Distributed PV installation becomes main force

High security requirements of distributed PV installation making intelligent junction box more applicable, which owns the advantages of MPPT, intelligent shutdown and low calorific value

Distributed PV installation, with **lower initial investment**

downstream manufacturers.


comparing to centralized PV installation, is attracting more

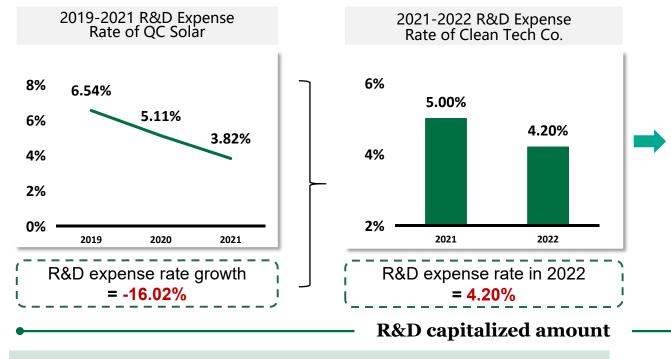
Excellent profitability

Benchmarking one of the first enterprises in the industry to start the development and pilot sales of intelligent junction boxes and finding it gains more profits than the ordinary one at the user end.

> 2021 Gross Profit Margin in Different Kinds of Junction Boxes

Intelligent photovoltaic industry innovation and development action plan (2021-2025)

Allocation of R&D investment:


Forecast R&D investment of Clean Tech Co. in 2022

R&D Investment = R&D expensed amount + R&D capitalized amount

R&D expensed amount

✓ Determine the R&D expense rate of Clean Tech Co. in 2022

R&D expensed amount

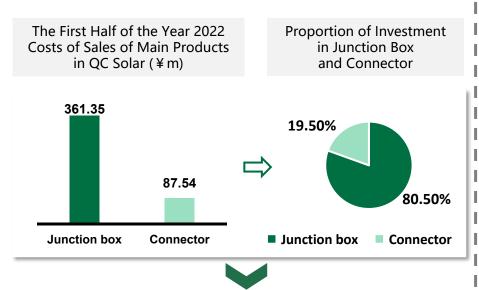
=730m * 4.20%

= 30.66m

- ✓ Referring to several comparable companies Tongling Electric and JSHT
- ✓ There is no capitalized R&D investment in recent years

R&D expensed amount = 0m

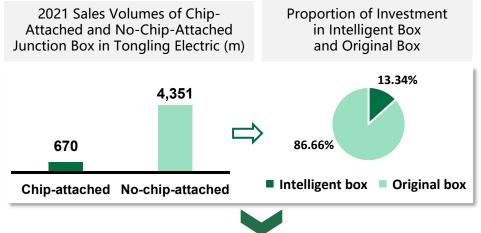
Total R&D investment in 2022 (without additional investment of Y 5m) = Y 30.66m


Allocation of R&D investment: Sharing investment between two product series & Sharing investment within junction box

Sharing investment between two products Junction box & Connector

Distribution idea

- According to costs of sales of two main product series referring to the most similar comparable company QC Solar in reality
- Allocating the initial R&D investment between junction box and connector



	Junction box	Connector
R&D Investment(¥m)	24.68	5.98

Sharing investment within junction box Original products & Intelligent products

Distribution idea

- According to the sale volumes of chip-attached and no-chip-attached junction box referring to comparable company Tongling Electric
- Allocating ¥ 24.68 m between intelligent junction box and original junction box
- > Input ¥ 5m new investment into intelligent box
- Ensuring competitiveness of original box and development of intelligent box

	Intelligent	Original
R&D Investment(¥m)	8.29	21.39

Allocation of R&D investment: Sharing investment between two

Sharing investment between two stages & Expenses control

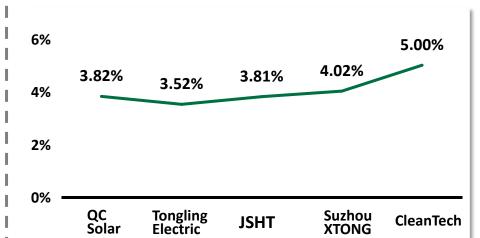
Sharing investment between two stages: Technology & Product development

Distribution idea

- Allocating ¥ 8.29m between technology development and product development of intelligent junction box
- Maintain profitability of overall junction boxes
- The expensed proportion in the technology development stage is significantly higher than that in the product development stage.

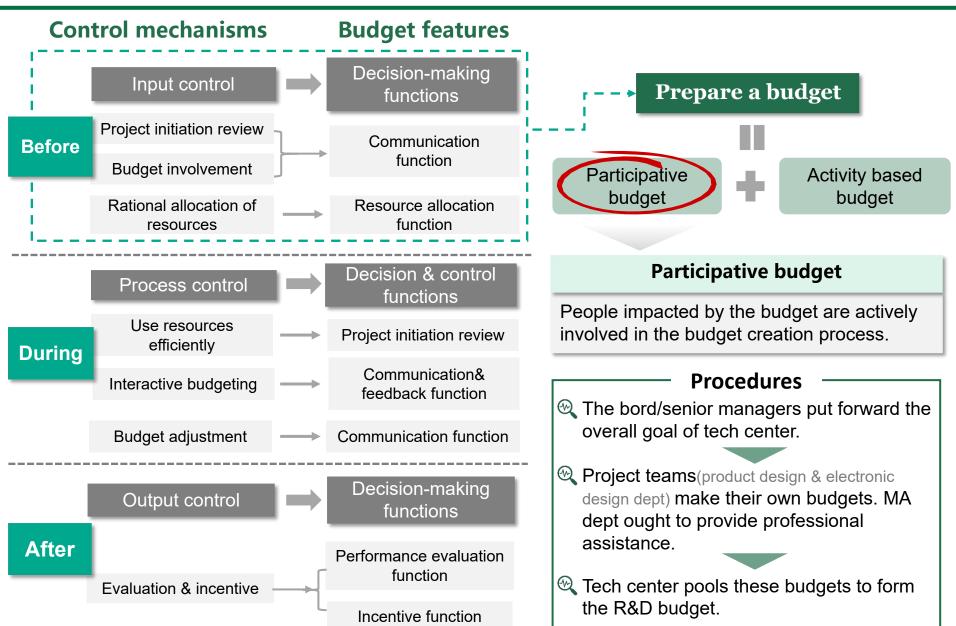
- √ 60% to technology development stage
 - √ 40% to product development stage

	Technology development	Product development
R&D Investment(¥m)	4.97	3.32


Expenses control: Managing expensed investment amount

Distribution idea

Maintaining the R&D expense rate ranging from 3.50%~5.00% if the actual R&D investment above ¥30.66 m, referring to the data from Clean Tech Co. and from several comparable companies in reality in 2021.



2021 R&D Expense Rate in several companies

Control Mechanism & Participative Budget

Activity Based Budget

Activity based budget

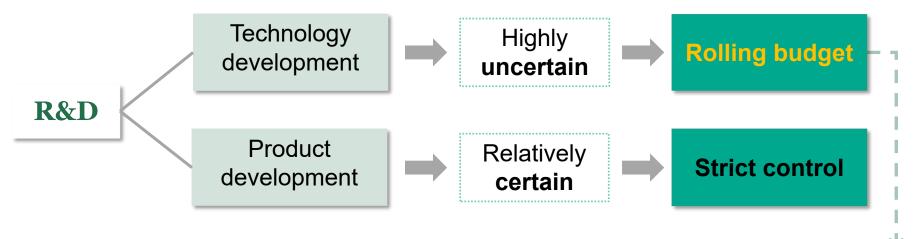
What

Activities are thoroughly analyzed to predict costs and to achieve the optimal allocation of resources.

Why

Overcome difficulties caused by the high degree of uncertainty and non-standardization of R&D activities.

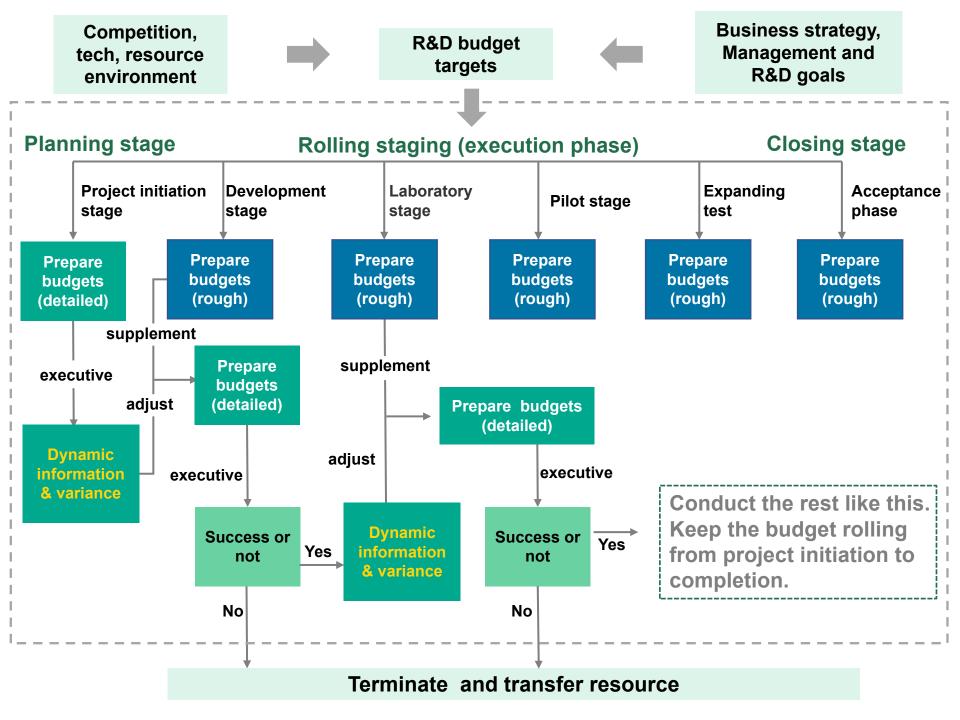
How


- 1 Identify main activities & cost drivers
- 2 Aggregate costs
- 3Allocate costs based on cost drivers

Technology development				
Stage	Technical concept formation	Technical concept research	Technical concept landing	Acceptance of technological achievement
Main activity	Proposal put forward	Feasibility research	Dismantling key tech's, R&D	Review , determine further management
Cost driver	Numbers of proposal put forward	Budget size	Human resource input & machine hour	Human resource input

Product development					
Stage	Definition	Design	Develop		
Main activity	Set-up the team, approve business plan	Design	Develop MVP(minimum value product), user review & feedback		
Cost driver	Labor hour	Labor hour	Number of MVP		

Intermediate Control for Technology Development: Rolling Budget



HOW to Make Rolling Budget

- ✓ Pre-set important time nodes.
- ✓ Provide budget buffer period after each node to supplement and adjust budgets.
- ✓ Prepare detailed budget for next period and relatively rough budgets for the other.
- ✓ After implementing each detailed budget, the dynamic information and variance should be included in a new round of budgeting.
- ✓ Implement the new detailed budget.

Intermediate Control for Product Development: Strict Budget

Every month

Third weekend of every month

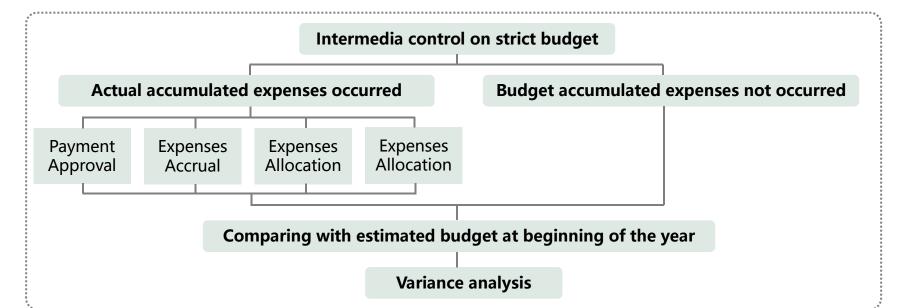
- ✓ Managers of tech center and financial center meet
- ✓ Specific progress estimation for current month based on accumulated progress
- ✓ To ensure target progress will be achieved

End of every month

Budget detailed table

- ✓ Formed by financial center and technology center
- ✓ To present project progress, financial expense progress and payment progress for the next month

Every Tuesday


Expense analysis table

- ✓ Formed by financial center
- ✓ To alarm progress control and delayed work

End of every month

Variance analysis report

- ✓ Formed by managing accounting department
- ✓ To compare actual results with budget of progress and expenses for the month
- ✓ To summarize differences, clarify causes and continuous improvement

Post-budget Control:

Performance Evaluation Function & Incentive Function

CleanTech Co.

Performance evaluation function

Determining evaluation index

Primary index	Secondary index	Tertiary index	
Performance evaluation system based on budget management	Budgeting	Budget preparation basisBudget editing data	
	Budget implementation	Budget implement attitudeBudget execution time	
	Implementation results	Financial indexNon-financial index	
	Continuous improvement	Adjustment proceduresEvaluation direction	

Fuzzy comprehensive evaluation method

✓ Converting qualitative evaluation into quantitative evaluation

Making factor set
$U=(u_1,u_2,\cdot\cdot\cdot,u_m)$

Conducting

total scores

of system

 $F = B_{1*n} * S_{1*n}^T$

Making evaluation set $V=(v_1,v_2,\cdots,v_n)$

comprehensive

Conducting single factor fuzzy evaluation to obtain the evaluation matrix

 $R_i=(r_{i1},r_{i2},\cdot\cdot\cdot,r_{in})$ Establishing a

evaluation model Determine factor weight $B = A_{1*m} \circ R_{m*n}$

 $A=(a_1,a_2,\cdot\cdot\cdot,a_m)$

Incentive function

Four stages of incentive based on performance evaluation

Cultural adaptation

System automatic operation

Habit curing

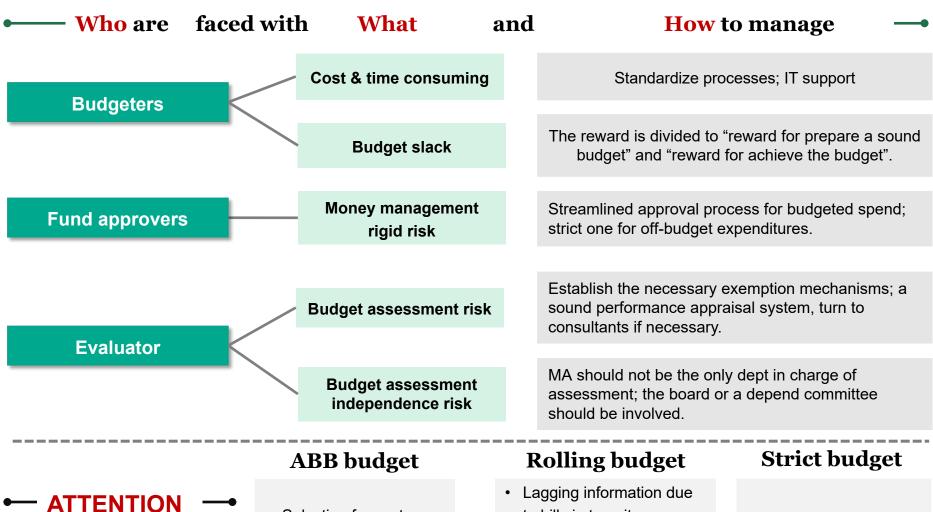
Gradual improve and keep improving

Basic principles

- ✓ Enterprise first
- ✓ Following the principle of market
- ✓ Positive reward principle
- Based on demand
- ✓ Fairness and impartiality
- ✓ Moderate reward and punishment

Target incentive target responsibility system Respect incentive value orientation

Participation management and advice


Honour incentive attitude and contribution

Care incentive daily work and life

Competition survival of the fittest

Risk Associated with Budget and Its' Management

Budget Risks

- Selection for cost drivers is arbitrary
- · Inconvenient to manage and control

- Lagging information due to bills in transit
- · Lack of cooperation of other divisions
- · Lack of executive force from heavy jobs
- Deviation from reality
- Lack of flexibility

Reference

- [1]【安信证券】快可电子(301278.SZ)光伏接线盒与连接器先锋企业
- [2] 王再望.光伏接线盒的改进和提升策略[J].电子元器件与信息技术,2022,6(06):42-46.DOI:10.19772/j.cnki.2096-4455.2022.6.011.
- [3] 梁莱歆.企业研发预算模式的改革出路——基于ABB的探讨[J].上海立信会计学院学报,2009,23(01):21-25. DOI:
- 10. 16314/j.cnki.31-2074/f.2009.01.003.
- [4] 高培勇.论健全现代预算制度的基础工程[J/OL].中国工业经济,2023(01):5-18[2023-03-01].DOI:10.19581j.cnki. ciejournal. 2023.01.001.
- [5] 官小春.国内外研发预算管理研究述评[J].财会月刊,2011,No.592(24):85-88.DOI:10.19641/j.cnki.42-1290/f. 2011.
- [6] 张宇,曾昭贤,李祥辉,谢振勇.基于AGV系统的光伏电池自动化车间[J].制造业自动化,2021,43(02):24-27+56.
- [7] 陈赟竹.基于全流程预算管控的制造企业成本控制研究[J].财会学习,2022(34):94-96.

Appendix

Appendix 1: Detailed illustration of predictive benefits analysis

Rectification costs

non-automated: RMB5000-RMB8000 (month per production line)

automated: the rectification costs can be ignored

Labor costs

non-automated: 3 person * 2 shifts = 6 persons' costs = RMB48000 (month per production line) automated: 1/2 person * 2 shifts = 1 person's cost = RMB8000 (month per production line)

Material costs

non-automated: RMB20000 (month per production line)

automated: RMB500 (month per production line)

Appendix

Appendix 2: Detailed illustration of allocation of R&D investment

- > Forecast R&D investment of Clean Tech Co. in 2022
- 1. Determine the R&D expensed amount
 - (1) Determine the R&D expense rate of Clean Tech Co.
 - (i) Calculate the expense rate growth of the most comparable company QC Solar.

$$\sqrt{\frac{3.82\%}{6.54\%}} - 1 = -16.02\%$$

(ii) Calculate the R&D expense rate in 2022 based on the result from (1) and R&D expense rate of 5.00% in 2021.

- (2) Ensure the target revenue in 2022 = ¥ 730m
- (3) Calculate the R&D expensed amount in $2022 = \frac{4730m}{4.20\%} = \frac{30.66m}{4.20\%}$
- 2. Determine the R&D capitalized amount

Considering several companies in reality, there is no capitalized R&D investment in recent years.

The R&D capitalized amount in 2022 = 40m

Conclusion: Total R&D investment (without additional investment of \pm 5m) = \pm 30.66m

Appendix

Appendix 2 : Detailed illustration of allocation of R&D investment (\pm m)

> Sharing R&D investment between two product series: Junction box and Connector According to the costs of sale of two kinds of product in QC Solar, the most comparable entity.

> Sharing R&D investment within junction box: Original products and Intelligent products We assume that additional 500m will be input into intelligent box, and 80% of the remaining to intelligent box too.

➤ Sharing R&D investment between two stages: Technology and Product development We assume that 60% of investment will be input into technology development, while the 40% to product development.